Let g be some deterministic function from $\{0,1\}^k$ to $\{0,1\}$ and \mathcal{A} be a randomized algorithm that on input $x \in \{0,1\}^k$ outputs $y \in \{0,1\}$. It holds that $\mathcal{A}(x) = g(x)$ with probability p, and $\mathcal{A}(x) = 1 - g(x)$ otherwise. Note that k is in \mathbb{N} .

- 1. Assuming p = 3/4, describe an estimator algorithm \mathcal{E} that estimates g(x) for a specific input x using \mathcal{A} as a subroutine and fails with probability less than e^{-k} . Describe your estimator, analyze its probability of success and also its running time.
- 2. Assuming p = 1/2 + f(k), how small can f(k) be so that an estimator invoking \mathcal{A} at most polynomial number of times in k fails with probability less than e^{-k} ?